Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders
نویسندگان
چکیده
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging.
منابع مشابه
Asymmetry of the Structural Brain Connectome in Healthy Older Adults
BACKGROUND It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome). This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks. OBJECTIVE To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults. MATERIAL...
متن کاملStructural and functional, empirical and modeled connectivity in the cerebral cortex of the rat
Connectomics data from animal models provide an invaluable opportunity to reveal the complex interplay between structure and function in the mammalian brain. In this work, we investigate the relationship between structural and functional connectivity in the rat brain cortex using a directed anatomical network generated from a carefully curated meta-analysis of published tracing data, along with...
متن کاملFunctional Connectivity Imaging Analysis: Interhemispheric Integration in Autism
The human brain connectome is intrinsically organized into small world networks. The network topology of brain can be investigated using anatomical, functional, and effective connectivity. Here we review modern functional connectivity statistics used to examine brain integration. We then assess transcallosal integration in autism during face processing using an interhemispheric partial correlat...
متن کاملIdentifying Relationships in Functional and Structural Connectome Data Using a Hypergraph Learning Method
The brain connectome provides an unprecedented degree of information about the organization of neuronal network architecture, both at a regional level, as well as regarding the entire brain network. Over the last several years the neuroimaging community has made tremendous advancements in the analysis of structural connectomes derived from white matter fiber tractography or functional connectom...
متن کاملThe structural connectome of the human brain in agenesis of the corpus callosum
Adopting a network perspective, the structural connectome reveals the large-scale white matter connectivity of the human brain, yielding insights into cerebral organization otherwise inaccessible to researchers and clinicians. Connectomics has great potential for elucidating abnormal connectivity in congenital brain malformations, especially axonal pathfinding disorders. Agenesis of the corpus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017